Cla-Val Automatic Control Valve Training

presented by Leonard Pinchuk- DM Valve

D.M. Valve & Controls Inc. Innovative Valve Technology

CLA-VAL Seminar Topics

- Manufacturing
- Principles of Control Valves
- Applications
- Installations
- Technical Support

Cla-Val Automatic Valve Features

- Drip-tight shut-off
- No packing glands
- No breakaway friction
- No external linkages
- No lubrication needed
- Lowest operating friction

Cla-Val Automatic Control Valves Consist of...

Main Valve

Pilot Control System

One Moving Part Inside the Valve

Disc & Diaphragm Assembly

Basic Hydraulics

Pressure X

Area

= Force

The Hydraulic Advantge

Fluid can be used like levers

Line Pressure to Open

Line Pressure to Close

Just a reminder...

- Water on the cover to close the main valve
- Water off the cover to open the main valve
- Knowing this makes troubleshooting easier...

Main (Basic) Valve

<u>Hy</u>draulic Control = Hytrol

Model 100-01

Model 100-20

To the largest: 48 inch

Globe and Angle Pattern

Diaphragm & Disc Assembly

A Look Inside the Hytrol

Flow Direction

Normal Flow

Reverse Flow

Over Seat and Down

Hytrol Main Valve

- Simple Construction
- Easy to Service
- Fewest Parts

Body and Seat Assembly

Complete Diaphragm and Disc Assembly

Cover and Spring Assembly

Name Plate Locations

Cla-Val Nameplate

Renewable Seat

Drip Tight Sealing

Seat Design Features

Diaphragm and Disc Assembly

Top and Bottom Guided Stem

Disc Guide

Valve Stem

No wrenches!

Use "soft jaws"

Bearing Surface

Date Stamp

Diaphragm Gripping

Fully Supported Diaphragm

Cover Chamber

Measured Stroke

X101 Valve Position Indicator

Cla-Val Pilot Controls

Open with 3-Way Pilot

Non-Modulating

Closed with 3-Way Pilot

Non-Modulating

Close Valve

Open Valve

A Modulating Pilot System Has...

Pressure Reducing Valves

90 Series Pressure Reducing Valve

Basic Operation of 90 Series PVS

Operation of 90 Series PVS

X46 Flow Clean Strainer

Orifice Restrictions

CRD Reducing Pilot Control

- Normally open
- Closes on pressure rise
- Senses outlet pressure

CRD Troubleshooting

- Make a visual check
 - ✓ Cover vent hole
 - Pressure gauge
- Vary control adjustment
- Check disc
- Check yoke alignment

CRD Adjustment Ranges

X140 Locking Cap

X140 Locking Cap

Typical PRV Station - Clayton Valley

Sizing Factors and Cavitation

- Flow rate capacity
 - At allowable pressure drop
 - At maximum velocity
- Pressure rating
 - Of valve and pilot system
 - Of valve flange
- Cavitation damage potential
- Materials compatibility

Valve Selection "Matrix" in Catalog

Valve Selection		These Symbols 📥 and 🖢 Indicate Available Sizes																	
		Inches	11/4	1½	2	2½	3	4	6	8	10	12	14	16	18	20	24	30	36
		mm	32	40	50	65	80	100	150	200	250	300	350	400	450	500	600	750	900
		End Detail	Threaded	Threaded & Flanged				Flanged											
Model 90-01	Basic Valve 100-01	Globe	-	1	1	1	1	1	1	-	1	1	1	-			-		1
		Angle		1	1	1	*	1	1	*	*	*	*	*					
	Suggested Flow (gpm)	Max. Continuous	93	125	210	300	460	800	1800	3100	4900	7000	8400	11000			25000		5000
		Max. Intermittent	120	160	260	370	580	990	2250	3900	6150	8720	10540	13700			31300		6250
		Min. Continuous	10	10	15	20	30	50	115	200	300	400	500	650			1750		290
	Suggested Flow (Liters/Sec)	Max. Continuous	6	8	13	19	29	50	113	195	309	441	529	693			1575		315
		Max. Intermittent	7.6	10.1	16.4	23	37	62	142	246	387	549	664	863			1972		394
		Min. Continuous	.6	.6	.9	1.3	1.9	3.2	7.2	13	19	25	32	41			110		180
Model 690-01	Basic Valve 100-20	Globe					**				-	1		-					
		Angle						*	1	*									
	Suggested Flow (gpm)	Max. Continuous					260	580	1025	2300	4100	6400	9230	9230	16500	16500	16500	28000	
		Min. Continuous					15	30	50	115	200	300	500	500	900	900	900	1850	
	Suggested Flow (Liters/Sec)	Max. Continuous					16	37	65	145	258	403	581	581	1040	1040	1040	1764	
		Min. Continuous					.9	1.9	3.2	7.2	13	19	32	32	57	57	57	117	

690-01 is the reduced internal port size version of the 90-01.

**Flanged End Detail Only

For 100-01 basic valves, suggested flow calculations were based on flow through Schedule 40 Pipe. Maximum continuous flow is approx. 20 ft/sec (6.1 meters/sec) & maximum intermittent is approx. 25 ft/sec (7.6 meters/sec) and minimum continuous flow is approx. 1 ft/sec (.3 meters/sec). For 100-20 basic valves, suggested flow calculations were based on flow through the valve seat. Approx. 26 ft/sec (7.9 meters/sec) was used for maximum continuous flow & 1 ft/sec (.3 meters/sec) is used for minimum continuous flow. Maximum continuous flow through the valve seat for the 30" 100-20 is approx. 20 ft/sec (6.1 meters/sec).

Many factors should be considered in sizing pressure reducing valves including inlet pressure, outlet pressure and flow rates. For sizing questions or cavitation analysis, consult Cla-Val with system details.

CLA-CAV Cavitation Analysis Program

Pressure Reducing Application: High Pressure Drop

100-01KO Anti-Cavitation Components

Disc Guide

Seat

KO Anti-Cavitation Retrofit Kit

Pressure Relief Valves

Series Principles of Operation

One Valve...Three Functions

- Pressure Relief
- Pressure Sustaining
- Back Pressure

CRL Relief Pilot Control

- Normally closed
- Opens on pressure rise
- Senses inlet pressure remotely

CRL Adjustment Ranges

Typical Back Pressure Application

Non-Modulating Valves

- Level Control Valves
 - Float or Floatless
- Remote Control Valves
 - Manual or Electronic
- Pump Control Valves
 - Well or Booster Stations

Two Basic Types of Level Control

Floatless

Floatless or Altitude Valve - 210 Series

CDS6A Liquid Level Control

- Three-way pilot design
- Spring adjustable level setting
- Reservoir level sensed as pressure head changes

CDS-6 has 5 adjustment ranges with 1 spring

Cla-Val Altitude Valves: Four Basic Types

Float Type - 124 Series

Combination Valves

Model 92-01 Pressure Reducing Pressure Sustaining Control Valve

Model 93-01 Pressure Reducing and Solenoid Shut-Off Valve

92-01 Pressure Reducing/ Pressure Sustaining Control Valve

CRL & CRD Comparison

Basic Operation of 92-01 PVS

Model 93-01 Pressure Reducing and Solenoid Shut-Off Valve

Basic Operation of 93-01 PVS

Remote Control Valves

Model 131-01

Model 350-02

Cla-Val Series 131 Electronic Valve

133-01 Series Metering Valves

Monitors and controls flow

CLA-VAL 131VC-3T 133-01 Metering with Control CLY-WIT 128

Pump Control Valves

Typical Deep Well Pump Station

Booster Pump Control Application - Series 60

Powercheck Main Valve

Model 100-03
Built-In lift type
check valve

Spring in cover 10" and smaller

Powercheck Components - Location and Function

Operation Theory: Open, Closed, Check

What is Surge?

Surge Train #1: Pumping is Normal

Surge Train # 2: Power Failure Occurs

Surge Train # 3: Zero Forward Velocity Condition Occurs

Surge Train # 4: Return Flow Condition Occurs

Surge Train # 5:

Surge Condition Occurs, Rapid Change in Velocity,
System Energy "Trapped"

Surge Train # 6: Pressure Surge Condition Occurs, System Energy "Released"

Surge Control Valves

Test Curve with No Relief Valve

Test Curve With Standard Relief Valve

Test Curve With Anticipating Relief Valve

Basic Surge Anticipator Pilot System

Typical Installation at Pump Station

Basic Troubleshooting

Basic Questions...

- Is the valve installed properly?
- Valves function in the system?
- Have any modifications been made?
- Do you have <u>accurate</u> inlet and outlet pressure gauges?
- Are the isolation valves open?
- If solenoid operated power to the coil?
- Have you consulted the technical manual? www.cla-val.com

Why control valves don't work...

- Misapplication?
- Misinstallation no water or electricity - sense lines connected?
- Inadequate maintenance

Preventative Maintenance

- Reduces operating cost
- Valve not open fully (reduce flow or pressure)
 OR
- Valve will not close (over pressurized system at night)
- Eliminates most emergences and associated damages

Preventive Maintenance is a Program of:

- Scheduling maintenance every year/ five year rebuild
- Keeping <u>accurate</u> service records!
- Regular cleaning and inspection usually once a year.

Preventative Maintenance Record

Valve No Location	Installed	
	Downstream Pressure	
Function		_
Control Settings	Code	
		_
Other		_
Date Service Perfo	ormed and Parts Used	
		_
		_
		_

Working safely while Troubleshooting and Servicing

- In traffic areas Keep a defensible traffic space, light boards etc.
- Vaults/confined space Gas detectors, tripod, harness blowers etc.

Hytrol Troubleshooting

- Check the effect in the system before testing
- Check pilot system components
- Use three gauges
- Use X101 Valve Position Indicator
- Perform the three Hytrol checks:
 - 1. Diaphragm test
 - 2. Stem freedom of movement test
 - 3. Disc & seat test

Successful Troubleshooting

- 1. Understanding how the valve works
- 2. Working safely and efficiently
- 3. Using test instruments
- 4. Performing testing in proper sequence

Start-Up Procedures

- All isolation valves are closed
- 2. Slightly open inlet isolation valve
- 3. Install X101 and gauges
- 4. Bleed air at all high points (pilot control and main valve)
- 5. Fully open inlet isolation valve
- 6. Adjust pilot controls to closed position and open all shut-off cocks
- 7. Slowly open downstream isolation valve
- 8. Set pilot controls after flow begins

D.M. Valve & Controls Inc. Innovative Valve Technology

